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INTRODUCTION

At the request of the Applied Physics Laboratory (APL) at Johns Hopkins
. University, NCSC investigated various aspects of the MAGGIE II vehicle, part
of a second-generation prototype system of towed magnetometers. The follow-
ing analyses were performed in the course of this study, the results of which
are documented herein:

(1) Sizing of tail surfaces of a typical MAGGIE II vehicle
configuration;

(2) Determination of vehicle stability, and specified cable catenaries,
including scopes and tensions, for a given configuration;

(3) Estimation of vehicle response to input at the upper tow point;
and

(4) Determination of the flow velocity over the afterbody.

VEHICLE CONFIGURATION

FIXED TAIL SURFACE SIZING

NCSC determined the sizing for the tail structure of the MAGGIE II
vehicle; APL supplied the external configuration of the fuselage. The
resulting vehicle is shown in Figures 1, 2, and 3. Mass characteristics
calculated using a weight and balance program developed at NCSC! are given
in Table 1, and hydrodynamic coefficients calculated by means of standard
NCSC techniques2’3 are presented in Table 2.

Three horizontal tail sizes, as detailed in Table 3, were considered.
The tail configuration labeled Fin 4 is a modification of Fin 2, in which
the leading edge has been swept 30 degrees. Fin 4 was selected for the
vehicle.

The following characteristics of the tail configuration were considered
in determining the relative effectiveness of the tail size alternatives.

1K.W. Watkinson, "The Midcohv Weight and Balance Computer Program (WTBAL),"
. Naval Coastal Systems Laboratory Informal Report 22074, September 1974.

2p.E. Humphreys and L.E. Bowen, “Prediction of Hydrodynamic Coefficients
For Underwater Vehicles," paper presented at 1975 NAVSEA Hydromechanics
Advisory Committee (SEAHAC) meeting, Monterey, CA., October 1975.

3D.E. Humphreys and K.W. Watkinson, "Prediction of Acceleration Hydro-
dynamic Coefficients For Underwater Vehicles From Geometric Parameters,"
Naval Coastal Systems Laboratory Technical Report 327-78, February 1978.
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A. TOP VIEW

g B. SIDE vIEw

C. FRONT VIEw
FIGURE 2, MAGGIE I VEHICLE (ToPp, SIDE, AND FRONT VIEWS)
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TABLE 1

MAGGIE II VEHICLE GEOMETRIC PROPERTIES

mass = 11.09 slugs

Ix = 1.61 slug/ft.2
1y = 3.93 slug/ft.2
Iz = 3.93 slug/ft.?
I, = 0.00 slug/ft.2
2 = 12.93 ft.
xnose/c.g. = 3.11 ft.
xnose/c.b. = 3.11 ft.

Zc.b. = -0.10 ft.

Cable length = 50.00 ft.

The twin horizontal tails act as endplates on the vertical tail and increase
its effective aspect ratio to range approximately from 2.5 to 3.0.% The
horizontal tails also serve as bi-wings, thus effectively doubling their
effective aspect ratio.? Interference effects at the junction of the verti-
cal and horizontal tails were not considered.

CONTROL SURFACE SIZING

MAGGIE II control surfaces were sized to produce a displacement of 5
feet vertically and horizontally when fully deflected (+20 degrees). The
nominal case examined was a speed of 8 knots and a cable length of 50 feet.
The surfaces used were rectangular, with a chord of 1.33 inches and a semi-~
span of 4 inches. Planforms of the horizontal and vertical tails are shown
in Figures 4 and 5, respectively.

45 F. Hoerner and H.V. Borst, "Fluid-Dynamic Lift," (Published by the authors,
1975) pp. 3-9 to 3-10, pp 20-7 to 20-8.
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TABLE 3

TAIL SIZE VARIATION

FIN 1 FIN2 FIN 3 FIN 4

Width (in.) 14.00 20.00 26.00 20.00
Length (in.) 24.00 24.00 24.00 24.00
Effective Span (in.) 6.50 12.50 19.50 12.50
Area (sq.in.) 156.00 300.00 444.00 248.00
Aspect Ratio 0.27 0.52 0.81 0.60
Effective Aspect Ratio Horizontal Tail 0.58 1.01 1.43 1.14
Taper Ratio 1.00 1.00 1.00 0.84
Leading Edge Sweep (deg.) 0.00 0.00 0.00 30.00
Aspect Ratio Vertical Tail 0.54 0.54 0.54 0.54
Effective Aspect Ratio Vertical Tail 1.85-2.5 2.5-3.0 3.00 2.5-3.0

To determine the magnitude of the displacement when the control
surface is deflected, the depth (Z) transfer function is examined. The Z
transfer function is formed from the w and 6 transfer functions and is
given by '

(s

ée S

s
|

1 w(s) _
_g(

5,(5) Y% 3_(s)

= .0041 (s + 49.45)
(s + 10.66)(s% + 0.170 s + 0.039).

Application of the Final Value Theorem of Laplace Transforms for a step
input in elevator results in steady state depth ‘change of

1im 1(s) !
Zsteady state s»0 ° 5.(s 5 %

0.49 ft./deg.

since the maximum elevator is %20 degrees, final steady state depth change

will be 10 feet. Also, because pigtail restoring forces vary inversely with
pigtail length, doubling or halving this length will double or half the depth

change. Doubling the elevator area will also double the depth change.
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NCSC TM284-80

The Y transfer function is formed from the v and ¥ transfer functions

and is given by

Y(s) _ 0.00

128 (s + 675.1)

8.(8) (g + 20.35)(s2 + 0.157 s + 0.040).

The steady state gain for a step rudder input i

Ysteady state 1.06

ft./deg.

Changing the cable length and the control surface area will have similar

effects on the y response.

VEHICLE STABILITY

BASE CASE

The stability of the MAGGIE II towed body and pigtail was examined for
various speeds and pigtail lengths. The base case used in this analysis was a
t. The corresponding longitudi-

speed of 8 ‘knots and a pigtail length of 50 fee

nal and lateral roots for the base case are given in Table 4.
roots marked roll and surge, longitudinal and lateral roots are similar because
symmetry. Roll roots are moder-
ately damped, with a maximum time to half amplitude of 1.9 seconds and a period
of 9.1 seconds. This can be improved by increasing the c.b./c.g. separation.

the vehicle has two almost identical planes of

TABLE 4

BASE CASE ROOTS

Except for the

Longitudinal ¢ w (rad./sec.)
-1.30, -10.66 1.61 3.71
-0.09 * 0.18 0.45 0.20

* -0.20 ¢ 0.11 0.87 0.24
Lateral Roots 4 w (rad./sec.)
-1.41, -20.3 2.03 5.35
-0.08t 0.18 0.39 0.20

ok -0.37 % 0.69 0.47 0.78

* Surge

** Roll

10
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TOWING SPEED

! Towing speed was varied from 2 knots to 14 knots with a constant

] pigtail length of 50 feet. Results of this analysis are presented in root
" locus form in Figure 6. Examination of the roll roots reveals that natural
L frequency does not vary with speed, due to the fact that wy is a function

of only the c.b./c.g. separation. Damping ratio does, however, increase
. with an increase in speed because of the presence of the tail.

Surge roots are dependent upon the X; cable derivative and the vehicle

drag coefficient; natural frequency varies proportionally with towing speed -
while damping ratio remains constant. Both roll and surge motions are :i
decoupled from the other motions of the vehicle.

Examination of the remaining roots reveals that the damping ratio of X
the oscillatory pairs continues to be constant while speed increases. 3
Damping ratio of the real roots decreases but remains greater than unity. g
Natural frequency, varying linearly with speed, increases in conjunction with :
speed for the remaining real roots. Motion associated with these roots “j
consists of w,q,z,06 longitudinal motion and v,r,y,¥ lateral motion.

PIGTAIL LENGTH

Pigtail length was varied from 25 to 300 feet while a constant |
speed of 8 knots was maintained. Figure 7 presents the results of this
analysis in root locus form. Examination of the roll and surge roots s
reveals that only the surge roots are affected by cable length varia- >
tion. Increasing pigtail length drives the surge roots toward their A
untethered values, 0.0 and 0.42, because cable length appears inversely -
in the X; derivative in the surge mode. :!

Base case real roots are only slightly affected by changes in -
pigtail length. Increasing the length results in a decrease in fre- "
quency of oscillation while time to half amplitude remains constant. -
Frequency of oscillation is dependent upon the cable derivatives which
vary inversely with pigtail length, while damping ratio is predominantly
speed dependent.

STATIC CATENARY

- The static catenaries originally proposed by APL were analyzed using
the three-dimensional cable program developed by Wang.5 Results of this

5H.T. Wang, "A Fortran IV Program for the Three-Dimensional Steady State
Configuration of Extensive Flexible Cable Systems," Naval Ship Research
and Development Center Report No. 4384, September, 1974.

11
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;é analysis are presented in Table 5. A typical MAGGIE II cable system is
t‘ shown in Figure 8.

= The depressor used for the purposes of this study was the Classic

; Thicket,® with a tail incidence angle of -2% degrees. Lengths of the

pigtails were such that the two MAGGIE towed bodies trailed at equal -
distances from the tow point at a speed of 8 knots. Lengths of the

cable segments were determined such that the first towed body was at a

depth of 100 feet, the second body was at 500 feet, and the depressor -
. was at 600 feet. Indicated cable sections were faired with Fathom .
- Flexnose Fairing; otherwise, ribbon or hair fairing was used. :

PR TR

PREANAS
IS BT Rp A

Ef The cable configurations adopted by APL? are constructed such that
= 100 foot lengths may be added or removed, as is illustrated in Figures
8 and 9.

EPN
A

VEHICLE RESPONSE TO UPPER TOW POINT INPUT

To determine the response of the MAGGIE system to a heaving motion
at the upper tow point, it was necessary to create a model of the entire
‘ system of MAGGIE bodies, cable, and depressor. The cables were modeled
a as five groups of springs and dampers, one group for each cable segment
& as was shown in Figure 8.

FPRY VIO TP

Input at the tow point was to have a 5-foot amplitude, corresponding
to Upper Sea State 3 as indicated in Figure 10, the Pierson-Moskowitz
Sea Spectra.® This also corresponded to a frequency of approximately 1 o
radian per second. Response of the system was determined over the range
of frequencies from 0.01 to 10 radians per second. The output amplitude
was normalized with respect to the input amplitude as is illustrated in
Figures 11 and 12 for Bodies 1 and 2, respectively. Response data for
frequencies greater than 1.2 radians per second corresponds to Sea States
1 and 2.

cod

s

Body 1 response peak occurs at approximately 0.08 radians per second
(Sea State 4). The amplitude of the z response at peak is 1.12 percent
of the input, while the 6 or pitch response is 0.4 degree per foot.

e

8Charles W. Sieber, "Design and Evaluation of a Large Towed Winged .
Depressor for Project Classic Thicket," Naval Ship Research and Develop-
ment Center Report No. SPD-487-04, October, 1974.

fé 7B.F. Fuess, "Cable Catenary for MAGGIE II Sensor System," Johns Hopkins
- University Applied Physics Laboratory Memorandum No. BFD-3-78-002, 30 March
.. 1978

84.J. Pierson and L. Moskowitz, "A Proposed Spectral Form Based on the
Similarity Theory of S.A. Kitaigorodski," Report No. 63-12, Geophysical
N Sciences Lsboratory, N.Y. University, 1963.
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In the range of frequencies from 0.1 to 0.2 radian per second, however,
the z response is only 32 percent of the input and the 6 response is 0.25
degree per foot.

The peak responses of Body 2 are not as sharply defined as those of
Body 1. They occur in the range of frequencies from 0.07 to 0.3 radian
per second, with a maximum z amplitude of 32 percent of the input, and
6 amplitude of 1.20 degrees per foot at 0.08 radian per second. The
maximum z amplitude near 0.25 radian per second is 25 percent of the input.
The maximum 6 amplitude of 0.25 degree per foot is only slightly less than
the peak 6 amplitude.

Frequencies less than 1 radian per second are outside the operating '
envelope of the vehicle. Motion expected in Sea State 3 for Body 1 is a LJ
one percent z response and 0.04 degree per foot 6 response. Motion
expected for Sea States less than 3 will be approximately the same as
those predicted for Sea State 3.

FLOW VELOCITY OVER AFTERBODY

Figure 13 presents the two-dimensional potential flow solution for =;
pressure distribution over the afterbody of the MAGGIE vehicle. Pressure o
distribution data was obtained by representing the body as a series j
of source panels, and then solving for source strengths which satisfy
the local boundary condition of each panel such that the velocity j
normal to each panel equals zero.

The local velocity over the afterbody is found from the pressure
distribution data by

2 = 2 - =
v: o= vZoa-c). ]

CONCLUSIONS

Analysis of the MAGGIE II vehicle has shown in to be stable and its
fixed tail size to be adequate. Determination of sizing for tail control
surfaces should be based upon the amount of cable to be used in the tow
tank tests. The proposed cable catenaries have been analyzed and the tensions
at the winch determined acceptable. Motion of the bodies induced by the upper
tow point was found to be acceptable through Sea State 3.
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